
Quality Technique: Prototyping

Sebastian Stein
sest04@student.bth.se

Kai Petersen
kape04@student.bth.se

Jan Dielewicz
jadi04@student.bth.se

Johan Andersson
frv00jan@student.bth.se

Abstract

Prototyping is a technique already known since several
years for example in production industry. During software
development it is also possible to develop prototypes to
evaluate or identify possible solutions. Complete prototype
based software development models exist.

In this article we present the prototyping technique. We
discuss the various different types of prototypes. We show
that prototypes can be used to prevent defects and also to
make use of software metrics early in development. Connec-
tions to quality systems are presented as well. At the end we
discuss project we participated in and how they could have
been improved applying different prototyping techniques.

1. Introduction

Jain et al. [13] promise improved software quality,
increased software productivity, reduced costs, reduced
risk, shorter schedules and improved customer satisfaction
through the use of prototyping. That sounds as if prototyp-
ing is the “silver bullet” [5] everybody in software industry
is looking for.

Prototyping is a technique to make the matter of interest
(or at least parts of it) visible at a very early stage of devel-
opment. In general, prototyping is not limited to a specific
area of business, although the use and the intention for using
it varies.

The underlying idea of the prototyping concept is closely
connected to the awareness that in software development
there is a necessity for active user involvement [15]. The
prototype in this context is used as a discussion basis. From
this point of view, prototyping (especially the evolutionary
prototyping) could be regarded as the ancestor of the agile
software development methods (e. g. [11]).

In software development, prototypes are used for differ-
ent purposes and in different ways. Very often prototypes
are used as communication facilitating tools. The visuali-

sation of something gives the opportunity to make a more
or less abstract topic more tangible. This is the reason
why prototypes in requirements engineering are success-
fully used for elicitation, validation and feasibility inves-
tigations [23, 16]. For design purposes, prototypes can be
used in an exploratory way to find out whether a proposed
new solution would work or to find a suitable way to design
the user interface [23, 17].

In the following sections we show that prototyping can
be used during all phases of software development. The ef-
fort needed to build a prototype varies greatly as well. This
leads to the conclusion that prototyping is independent of
the kind of software project. It can be applied in market-
driven projects as well as in single customer projects [23].

1.1. Outline of this Article

In the following section we discuss the various differ-
ent prototyping approaches in detail. After the strengths
and weaknesses as well as reason why to use prototypes
are presented. Closely connected to this is the question
how to motivate organisations, developers, customers, and
managers to use prototypes in software development. In a
following section we discuss which defects can prevented
by the use of prototypes. A discussion about the relation
between prototyping and quality systems like CMMI and
ISO 9000:2000 is presented as well. In another section we
show how software metrics and prototypes can be used to-
gether. At the end we discuss 4 example projects we partic-
ipated in where a prototype would have been beneficial.

2. Variants and Concepts of Prototyping

2.1. Overview

In literature many different names for different types of
prototypes and prototyping concepts exist: throw-away pro-
totyping, rapid prototyping, evolutionary prototyping, ex-
ploratory prototyping, experimental prototyping, interface



DEPLOYMENT
 ANALYSIS


DESIGN
IMPLEMENTATION


Figure 2. Spiral model [3]

prototyping, etc. A reasonable classification for the proto-
typing concept is presented by [23]. Sommerville distin-
guishes between throw-away and evolutionary prototyping.
The criterion for this classification is the fact whether the
prototype becomes part of the end-product or not.

For prototype implementation a large variety of different
media are in use: pen and paper, whiteboard, visual tools
(painting programs), executable prototypes, etc. [24]. Of-
ten the possibility to actually use the prototype is related to
the fidelity of the prototype. In that sense a pen and paper
prototype is a low-fidelity prototype whereas an executable
program is a high-fidelity prototype [22].

In figure 1 on page 3 the prototypes distinguished ac-
cording to their purpose are illustrated. Each of those pro-
totypes is described in more detail in the following sub-
sections. We also discuss the concepts of high/low-fidelity
prototypes and vertical/horizontal prototypes.

2.2. Evolutionary Prototyping

Evolutionary prototypes [23] are developed iteratively
and hence they have a strong relation to classical evolution-
ary process models like the spiral model [3]. A classical
spiral model repeats the software development phases anal-
ysis, design, and implementation until the result is satisfac-
tory. The spiral model is shown in figure 2 on page 2. At
the end of the incremental process, as it is the case in the
context of evolutionary prototyping, a complete product is
deployed. Therefore we interpret evolutionary prototyping
as a software process model rather then an artifact.

When developing software using the evolutionary proto-
typing approach the user is given the opportunity to com-
ment the prototype in each iteration. Hence the prototype
is refined iteratively according to the comments of the user.
This is done until the product has achieved a satisfactory
state. Figure 3 on page 3 illustrates the evolutionary proto-
typing process [23].

As stated by Sommerville [23] the process model is only
suitable for small and medium sized systems, because oth-
erwise several problems occur. Management problems oc-
cur because prototypes evolve very quickly and hence it is
hard to define accurate milestones and do proper planning.
Furthermore managers often lack of experience in manag-
ing evolutionary prototyping. Other problems are related to
maintenance, because of continuous change in the software
structure and software architecture. Like in management a
lot of experience in maintaining evolutionary prototype sys-
tems is needed. Moreover contractual problems may occur,
because there is no detailed specification in the beginning
fixing what should be delivered at the end. Another thread
in this context is that change requests on the part of the cus-
tomer can not be controlled. Hence it is hard for the devel-
opment company to determine the effort.

Because of this Sommerville [23] proposes an incremen-
tal process model very similar to the classical spiral model
suggested by Boehm [3]. First an overall software architec-
ture is established. This architecture is implemented incre-
mentally. When components and interfaces are considered
as complete they are not changed anymore and get into the
final system. Later comments and complaints on the part
of the customer regarding those components can be taken
into consideration in later deliveries. For the process, doc-
uments are produced including e. g. plans and architectural
designs. Because this process is planned and documented it
is easier to manage. Also contractual problems are solved to
some extent, because the process is based on defined system
deliverables as illustrated in figure 4 on page 3.

2.3. Throw-away Prototype

Contradictory to evolutionary prototyping, throw-away
prototypes are not used in the end-item delivered to the cus-
tomer. Instead, their purpose is to find solutions for prob-
lems. As stated by Sommerville [23] and Kotonya et al.
[16] throw-away prototypes aim at eliciting requirements
by showing possible solutions. Hereby the focus lies on
requirements which are hard to understand [16]. When the
throw-away prototype is developed the customer can try out
the proposed solution. This is a good baseline for further
discussions about solutions for identified problems.

Sommerville [23] proposes a process for throw-away
prototyping. It starts with outlining the elicited require-
ments. After that a prototype of the system is developed and

2



Identify

Requirements


Verify Solutions

Incremental


Development of

End-Item


Explorative

Prototype


Thorw-Away

Prototype


Experimental

Prototype


Evolutionary

Prototype


Purpose


Figure 1. Structure of prototype variants

Develop Abstract

Specification


Build Prototype

System


Use Prototype

System


System

Adequate?


Deliver System


NO


YES


Figure 3. Evolutionary prototyping process model [23]

Define System

Deliverables


Deliver Final System
 Validate System
 Integrate Increment


Validate Increment

Build System


Increment

Specify System


Increment

Design System


Architecture


System

Complete?


NO


YES


Figure 4. Incremental prototyping process [23]

3



Specify System
Evaluate Prototype
Develop Prototype

Outline


Requirements


Delivered Software

System


Validate System
Develop Software


Figure 5. Throw-away prototyping process [23]

shown to the customer. Customer and developers discuss
issues concerning the prototype and clarify and identify re-
quirements. This is an iterative process, because the proto-
type should be modified until it meets the customers expec-
tations, in other words: we have understood the customer
properly. Based on this better understanding of require-
ments the system is specified and the software is developed.
In general the prototype is thrown away, but sometimes, as
shown in figure 5 on page 4, some parts of the prototype are
reused, for example the outlined interfaces.

2.4. Explorative and experimental Prototype

As illustrated in figure 1 on page 3 explorative prototypes
have the goal to clarify and analyse requirements. The re-
quirements are unclear like it is the case for throw-away
prototypes. Therefore we conclude that explorative pro-
totypes are very similar to throw-away prototypes. How-
ever, the difference is that here the prototype should not be
thrown away at the end.

Contradictory to explorative prototyping, experimental
prototyping aims at clarifying technical issues. This means
for example that the developers try different implementation
alternatives to validate possible solutions.

2.5. Rapid Prototyping

According to Sommerville [23] rapid prototyping is aim-
ing at delivering releases of products as fast as possible.
Hereby the time-to-market is the most important aspect,
more important than for example reliability or performance.
To develop a prototype very fast tool support is needed. For
this purpose often rapid application development (RAD) en-
vironments1 are used. Those environments provide for ex-
ample user interface builders where one can easily build an
user interface by dragging and dropping user interface ele-
ments like buttons and edit fields on a form. Such environ-
ments provide many reusable components. It can be said

1e. g. Microsoft Visual Studio .NET or Borland’s Delphi

that the more reusable components such a RAD environ-
ment provides, the more it is suited for rapid prototyping.

Furthermore Sommerville [23] points out that the selec-
tion of a programming language depends on the application
domain the prototype is developed for. For example, Bor-
land’s Delphi is suited for interactive systems, because in-
terfaces and events can be implemented very easily. Contra-
dictory to this, logical problems should be solved by using
a programming language like Prolog.

2.6. Vertical vs. horizontal Prototype

Horizontal prototypes show a wide range of features
without many details. This can be for example all visual
parts of the system [9]. Hereby interactions with the sys-
tem can be tried out, but there is no data handling or data
processing. In this context Sommerville [23] talks about in-
terface prototyping. He states that the end-user has to be in-
volved because he is the person who should be able to han-
dle the interface of the final product. This can be done by
evolutionary prototyping, e. g. the prototype is developed it-
eratively together with the user. Examples for interface pro-
totypes are for example forms created with reusable com-
ponent libraries like RAD environments. Further HTML
is a good approach to develop draft interfaces for web-
development projects.

On the other hand, using vertical prototypes small parts
of the system are simulated in detail. Such prototypes can
become a part of the final end-item [9].

We think that the horizontal prototyping is more suited
for users of the future system. They have to get an overview
of the whole system. Vertical prototypes are developed to
evaluate technical problems like interfaces and database ab-
straction layers.

2.7. High-Fidelity vs. Low-Fidelity Prototype

Two ways to perform prototyping are low-fidelity and
high-fidelity prototypes [21]. Low-fidelity prototypes can

4



not be used in the end-product, because they are not de-
tailed enough. Thus they can be considered as throw-away
prototypes. In the following we present different types of
low-fidelity prototypes.

Storyboard [16]: This approach is similar to a storyboard
for a movie where a series of pictures illustrates the different
stages of a scene following an order. This can also be done
for a program where it becomes transparent how the user
will interact with the system. Hereby people start thinking
about how the system could be used and they may notice
important and missing things. Furthermore questions ac-
cording to simplicity of dialogs, reading pattern, order and
grouping of elements, and the number of elements can be
answered.

Paper Prototype [16]: Those prototypes are also referred
to as mock-ups. Hereby a user interface is designed on a
clipboard representing the screen. One possibility to create
these prototypes is to draw a picture on the clipboard or
to fix different dialogs (papers with various colors) on the
clipboard. Also, as mentioned before, such prototypes can
be created with RAD environments. Furthermore graphic
drawing programs can be used for this kind of prototype.

Wizard-of-Oz Prototypes [16]: Those prototypes have
an interface so that the user can interact with the system.
But there is no implementation for data processing. Instead,
the feedback is done by a real person, the so called wizard.
Hereby a lot of implementation costs are saved, but still it
is possible to simulate user interaction with the system.

On the other hand, high-fidelity prototypes are more ex-
pensive and implementation is harder [21]. High-fidelity
prototypes are a draft implementation of the final product
representing the whole system or just parts of it. Those
prototypes can be realised for example by rapid prototyp-
ing where a basic implementation of the system is made.
Moreover high-fidelity prototypes can for example be used
for presentations and reviews to validate the system because
they already cover a broad set of features which should be
included in the final application as well. This kind of proto-
types can also be used to test quality attributes like usability.

3. Strengths and Weaknesses

3.1. Strengths and Reasons for using Prototyping

The concept of prototyping allows a very broad use in
software development (compare section 2). Because of this
prototyping is a very flexible method and can be applied for
a large variety of aspects that need clarification.

As already mentioned, and this is a major strength of
prototyping, the capability of visualisation the abstract el-
ements of software helps to improve the understanding of
the development matter at a very early stage of develop-
ment. Therefore, prototyping became a standard method in
requirements elicitation and requirements validation [16].
Here, prototyping can be used to find out whether all in-
volved people have developed the same understanding of
the requirements. This ensures at a very early stage that the
project will result in a valid system. In addition, develop-
ers, analysts and users will have the possibility to discuss
the system in question further and therefore are able to dis-
cover additional requirements or refine already elicited re-
quirements to a sufficient level. This all helps to reduce the
risk that the system will not suite the customers needs. In
the end, this is not only a cost factor, but also essential for
the overall success.

By using the prototype, the customer gets very early an
impression of how the hired software vendor is going to im-
plement the requirements. This comes along with two as-
pects: First of all this is a kind of an early acceptance test,
at least for those parts that are represented by prototypes. In
these cases, the customer has the opportunity to approve or
not to approve the suggested solutions. This is especially
true for the interface prototyping. The example in section
8.2 shows, what may happen when this aspect is neglected.
Especially when a completely new kind of application is
built, several usability concepts may be new. This leads
to the second beneficial aspect, the user training. Playing
with the prototype at an early stage will increase the under-
standing of the users as well as it will help to identify the
most serious problems with new interface concepts. Those
problems then can be addressed in a proactive way by de-
veloping the user manual or the user-training program. The
usability and the product related services are a very impor-
tant quality factor. In some cases it might even be possible
to use the developed prototype for training purposes. This
means training of the future users can start earlier which
supports the deployment of a new system.

Although some authors (e. g. [8]) state over and over
again that building the source code is not the problem of
software development, this is sometimes in fact a tough
task. In those cases, prototyping helps to figure out how
a specific problem can be solved. This is valid for design
purposes as well as for implementation aspects. The pro-
totype in this context gives the opportunity to try out new
and unproven things, which provides the opportunity for
developers to learn new methods of development or tech-
nologies. In the project that is matter of the example in
section 8.2 we tried out a lot of so called design patterns,
like the concepts of observer and singleton, during the de-
velopment of the experimental prototypes. This helped us
to find easy to program and well working solutions for the

5



challenges during the development. Because of this, the de-
sign reached a higher level of maturity. During the ongoing
project, we decided to implement a multi-language support
for the system. It should have been possible to change the
language during runtime. Because of the superior design, it
was possible to implement this new requirement relatively
easy. This is an example of how prototyping can improve
not only the design quality, but also even the maintainabil-
ity. In commercial projects, this helps to save money and
reduce risks for failure. This is especially true, when the
same people do the development of the prototypes and the
final system. The developers then have the chance to make
the serious mistakes during the prototyping and not during
the development of the final system.

3.2. Weaknesses

While developing prototypes, there is the risk to end up
in a vicious circle of refinement. That means that analysts,
users and developers loose the focus of what the prototype
was meant for and start to look in details too much. When
this happens, the risk not to meet the schedule and the costs
increases.

The next weakness of prototyping is connected to the
problem before. When a lot of effort is spent in the develop-
ment of a prototype, it is not easy (because of emotion and
of the resources spent for it) to throw this prototype away
and start from scratch. This means, the prototype, which
originally was meant as a throw-away prototype becomes an
evolutionary prototype. One could state that this is no prob-
lem, when the prototype works. However, when the proto-
type was meant as a throw-away prototype, most probably
not everything is implemented at a sufficient level of qual-
ity and therefore it is better to throw it away. This problem
especially occurs when the prototype is developed with the
same tools as the final product. To avoid keeping something
that better should have been thrown away, one could decide
to build the prototype on a lower level of fidelity or use a
different technology that is not applicable for the final solu-
tion. This of course would reduce the learning benefit. In
the example described in section 8.2, one motivation for us-
ing prototyping was not only to learn about the best design
or specific design patterns, but also about the programming
language, the integrated software development environment
and additional tools like the concurrent versioning system in
advance of the real product development. When one decides
to change the tools, this learning effect is gone.

Arthur Lowell Jay [14] spotted that a prototype might
challenge the customers patience, since the product is al-
ready visible but the developer tells the customer it is not
yet ready for use. This again is especially true for proto-
types of high fidelity. Possible solutions and the connected
problems are the same as just discussed.

3.3. Conclusions

The weaknesses just mentioned show that experience as
well as education and training are necessary for prototyping
just as it is for all other techniques. The necessity increases
with increasing fidelity of the prototype. Therefore, choos-
ing the right level of fidelity is an important aspect when
dealing with prototypes.

We have to admit that on the first view prototyping seems
to be a very costly method for development. The project
must include extra resources for prototyping. This could
be regarded as the major disadvantage. On the other hand,
as shown by the examples in section 8, prototyping can save
money as well. This is not only true because the final system
will better fit to the customer’s expectations, but also be-
cause the developers can directly use their experience from
the prototype development for the development of the final
system. That means that at least parts of the extra time used
for prototyping is going to be saved during the development
of the final system.

4. Motivation of Use

In this section we discuss how to motivate organisations,
developers, customers, and managers to use prototypes dur-
ing software development. This includes a discussion of
reasons for resistance.

Management might say that prototypes cost too much
and should therefore not be done. The customer might think
that a project will be delivered later because of the extra
time needed for prototype development. Building and re-
viewing a prototype might cause extra effort for the cus-
tomer, because he is more involved in the development.
This will cause extra costs. Developers might ask why they
should develop something which is thrown away later or
which will at least not be used in the developed way com-
pletely. They might think they are doing useless work.

However, those claims are weak. Everybody will agree
that it is useful to first test something out before investing
much money. For example before someone buys a car he
has at least a test drive and he reads car reviews in tech-
nical magazines. Prototypes are used in all other industry
domains. An architect makes a small model of a build-
ing, prototypes of cars and components are produced before
mass production is started.

To motivate people to use prototypes one has to com-
municate the advantages of prototypes. In a pilot project
people must be educated in prototyping techniques. At the
beginning only small prototypes like explorative prototypes
should be used so that everybody can see the advantages im-
mediately. Developers will recognise that they already used
prototypes without knowing that experimenting with possi-
ble solutions can be considered to be a prototype. A system

6



developed using prototypes will more likely meet the re-
quirements of the customer and may have less defects. This
means a lower number of change requests can be expected,
which will reduce the work load of the developers. This
should be communicated to them as well. One can also use
reward programs to stimulate the usage of prototypes [12].

Of course the customer will have extra effort if he partic-
ipates in prototyping sessions. However, the customer also
gains influence on the project and the chance increases that
the final product will meet his actual requirements.

Using prototypes means reducing risk. A reduced risk
level always means higher costs. It is in the end a manage-
ment decision how much one likes to pay for risk reduction.
However, using prototypes can reduce the risk heavily as
we show in our examples in section 8. Prototypes might
also help to make better estimates. After evaluating a pos-
sible solution one can better estimate how much time and
money is needed to implement the final product. Further-
more, customers will be more satisfied with the software
vendor, because of meeting the actual requirements of the
customer by better requirements elicitation and validation
through the use of prototyping. The customer might choose
again the software vendor for another project, which is the
aim of managers.

5. Prototyping to prevent Defects

There are a number of different problems that can be
avoided with the use of prototypes. To use the word proto-
type is a bit to general since there are a number of different
prototyping techniques [16]. Each of the different prototyp-
ing techniques is useful to apply to prevent one or a small
number of different problems. Prototyping is not a silver
bullet; it cannot be used to prevent all types of defects. It can
however be used to prevent a number of different problems
that can occur during the development of an application.

One type of defects that prototypes are good at prevent-
ing is the problems that can arise with the use of wrong
requirements. A large number of the defects in a product
can generally be related to flawed or misunderstood require-
ments [16]. With a prototype it is possible to get the stake-
holders view upon the correctness of a requirement to make
sure that it is understood correctly [23]. The use of proto-
types often works to the engineers advantage as it makes
it easier for them to formulate their points and helps them
to explain solutions. The obvious example here is the use
of different prototyping techniques to build a graphical user
interface that the stakeholders then can evaluate to certify
that it is what they want.

It is also possible to evaluate if a requirement is feasi-
ble, e. g. if it is possible to implement it at all [16, 20].
This helps avoiding situations where a requirement cannot
be implemented and an alternate solution has to be found.

If this is done before the implementation phase it prevents
possible problems from entering the application.

Problems with the design of a software product can also
be made evident by the use of a prototype [20]. By imple-
menting the whole or at least a small part of a design it can
be made evident if there are any flaws within the design that
have to be corrected. When this is done at an early stage it
is possible to avoid integrating flawed solutions into an ap-
plication, preventing them from causing problems at a later
stage.

Design of a database can be hard and avoiding to alter it
at later stages during development because of flaws in the
database design is important. Prototypes are in this case ex-
cellent since they allow for the databases to be implemented
and tested before the wrong database design can cause prob-
lems [6].

One common source of problems in an application today
is interfaces between different components [4]. To discover
a flawed interface in a product at a later stage of develop-
ment can be very costly. Prototypes provide a good way
to certify interface correctness at an early stage of develop-
ment. A prototype allows for the different interfaces to be
implemented and evaluated. Should one or more problems
occur with the interface it can be corrected without actually
having to alter the affected components of the application,
which would have been the case if implementation had al-
ready begun.

6. Prototyping and ISO 9000/CMMI

ISO 9000:2000 and the Capability Maturity Model In-
tegration (CMMI) are both quality systems. They describe
the characteristics of processes leading to high quality prod-
ucts. It can be said that those models describehow such
a process should look like and notwhat exactly should be
done. It is up to the company to define a process accord-
ing to those quality systems. This means a company has to
decide if the prototyping techniques helps implementing a
process according to those quality systems.

ISO 9000:2000 is a generic quality system, not aiming
at a specific domain. To support the usage of this standard
in the software development domain the TickIT [18] guide
exists. This guide shows how ISO 9000:2000 can be im-
plemented for a software process. The CMMI [19] directly
aims at the software development domain. It already con-
tains several examples where prototyping can be applied to
create a software process leading to high quality software
products.

Prototyping is proposed by CMMI in the process area
requirements development [19] as a technique for require-
ments elicitation. For example prototypes can be used to
analyse the balance between stakeholder needs and envi-
ronmental constraints.

7



In the process area technical solution [19] prototyping
should be used to define possible solutions for requirements.
For example a possible solution gets implemented and anal-
ysed to see, if the solution will fulfill the requirements. It is
pointed out in this process area that the selection of a spe-
cific prototyping technique always depends on the solution
as well. For a small problem rapid prototyping might be
a good way to go. In contrast, for a multi-year project a
much bigger prototype might be needed as well. This also
includes evaluating possible software architectures and de-
signs by the use of prototypes.

Prototyping should also be used to validate requirements.
This means the user can see how the software engineer un-
derstood his requirements by reviewing the prototype devel-
oped so far. Wallace et. al [25] point out that validation and
verification activities should be done all over the software
development process. This is also the intention of CMMI
and TickIT. This means prototyping can be applied at ev-
ery stage in software development. However, it might not
be always the most suited technique for this purpose. A
software engineer has to decide in the given situation which
technique he is going to use.

CMMI [19] mentions prototyping in the process area
verification and in the process area risk management as a
possible technique for risk mitigation. For example proto-
typing can be used to check the feasibility of a proposed so-
lution. This also includes to use prototyping in the decision
analysis and resolution process area. Here a prototype is
developed to show possible impacts of a decision. This sup-
ports decision making. All those actions can help saving a
lot of money, because wrong solutions are not implemented
or are at least discovered early to be no good solutions at
all.

Before a software product gets released it must be in-
tegrated with all other software systems in the system en-
vironment. To facilitate this task, CMMI [19] suggests to
use prototyping for this purpose as well. Integration efforts
should be started early by simulating the environment and
the system components through prototypes. This helps to
identify possible problems for integration and to develop an
integration strategy.

Furthermore, prototypes can be used to teach the usage
of the new system to the future users early. This is a core
interest of the TickIT [18] guide.

ISO 9000:2000 emphasises the customer focus and in-
volvement of people [2, see e. g.]. Prototyping is a valid
technique to ensure the involvement of the people. It helps
to understand the real needs of the customer, which is the
aim of customer focus. Customer focus also includes to
have good communication with the customer. Prototyping
can play an important role in this context, because soft-
ware engineer and customer have to closely work together
to identify possible problems in a proposed solution.

In summary it can be said that prototyping is a valid tech-
nique in CMMI as well as in ISO 9000:2000. However, one
has to keep in mind that it is just one technique and that just
relying on prototyping is not sufficient.

7. Metrics

In this section we present some examples how to com-
bine prototypes and software metrics.

A high-fidelity prototype produced for example by rapid
prototyping can be used for any software metric, because
such a prototype is very similar to the final product.

A prototype can be used to measure the associations be-
tween e. g. classes or modules. Using software metrics like
fan-out and fan-in [10] show, if the code is well structured
and the principles of high cohesion but loose coupling [7]
are done correctly. If the metrics show problems the devel-
opers should rethink the chosen software architecture and
transform it to a better one. The transformed architecture
can be evaluated again using a prototype.

One can develop a prototype with the core functionality.
This means only about 10% of the final code size, without
any user protection and error handling, and a very basic user
interface. Based on this prototype one can estimate the costs
and development time needed for the complete product.

Sommerville [23] suggests to use a low-fidelity proto-
type to evaluate the user interface at an early development
state. He argues that at this point of development an evalu-
ation based on metrics is not possible yet, but still the low-
fidelity prototype like a paper mock-up will show important
results to the developers and the customer.

Another idea to combine prototyping and software met-
rics is to measure the usability of an user interface. If a
test user gets quickly familiar with the use of the prototype
one can conclude that the interface is well designed. It can
be measured for example how long a test user needs to get
familiar in handling 80% of the functionality.

Those small examples show that it is possible and rea-
sonable to combine prototypes and software metrics. How-
ever, before things are measured one has to first define the
question to be answered by the measurement. Having sev-
eral software metrics based on prototypes without using
them is wasted effort.

8. Examples

In this we are presenting 4 examples of past projects we
participated in and where prototyping was used or should
have been used. For each example we briefly describe the
project and present how a prototype would have improved
the project. A cost-benefit analysis is presented for each
example as well.

8



8.1. Example 1: Oversized Functionality

A mistake that happened to one of us is connected with
misinterpretation of requirements. The project was con-
cerned with a web-based customer-care-tool. The require-
ment specification stated something like “It shall be possi-
ble to enter and maintain several contact persons per cus-
tomer and per locality. One of these contact persons shall
be distinguishable as the main contact-person. The main
contact person may change from time to time.” This re-
quirement was interpreted in the following way: For each
customer there may be one or n locations. For each loca-
tion there may be 1 or m contact persons. For each location
there may be 0 or 1 main contact persons. Since all other
data connected to this system were stored in a common rela-
tional database-system, the database design was extended to
that level of detail. The web-form displaying the customer
details was extended with a list of all locations. On the next
level (another linked web-form) the details for the location
was displayed as well as a list of all contact persons linked
to this location. The main contact person was displayed in
all details. Of course, there were functions implemented to
be able to change the main contact-person, to “move” con-
tact persons from one location to another and to link one
contact person to multiple locations and so on. Of course,
we very much focused on checks like ensuring that there
is only one main contact-person per location. Functions to
add, change, and delete contact persons were implemented
anyway.

Although the developers thought they built a good so-
lution, the customer was not satisfied, because the solution
contained more than one web-form for displaying the in-
formation. When discussing what was wrong and how to
solve this problem, we found out that the solution was far
too far oversized for the needs of the customer: 99% of
the customers customers only had one location and only
one contact person. What the customer really wanted was
only a simple text field to add his own qualifier like this:
“main contact, receiver of invoices, likes soccer (Bayern
München)”. We had to implement some changes: All in-
formation had to be displayed on one web-form. Since the
extra form for each location was missing now, the relation-
ship which contact belonged to which location had to be
displayed in the list of contacts as well. Finally, we had to
add a text field for special remarks, which were used for per-
sonal conversation at phone, e.g. the latest results in soccer.
Of course we did not throw away the extra functionality, but
to a very large extend it was useless.

Obviously, the requirement was not specified directly by
the customer, but by someone else. For the developers the
requirements specification seemed to be clear or at least
clear enough. They did not expect such a deviation between
specification and the real needs and therefore were not curi-

ous. Nonetheless, the requirement specification was wrong,
or in other words contained a defect.

In this special case, prototyping definitely would have
avoided the problem. This is not so much true for the design
and implementation stage but especially for the require-
ments validation stage. Even only the use of pen and paper
to draw an interface prototype (as described in [1]) would
have prevented this defect: The pen and paper prototype
would have displayed the different data to be displayed, the
customer data, the location list, the second level with the
location details and the contact list, and so on. In other
words we would have had presented our understanding of
what was written in the requirements specification, the cus-
tomer most probably would immediately have noticed that
our understanding of the requirement does not match his
real needs. The use of pen and paper would have made it
possible for the customer then to draw a picture of his ex-
pectations without any detailed knowledge of database de-
sign or programming.

The costs of this defect are built by the extra effort to
implement the unnecessary functionality, the discussion to
analyse the problem and the additional time to fix the defect
by changing the original solution. The extra time to build
the unnecessary functionality was about 25 person-hours.
The discussion involved five people and took about 1 hour
(5 person-hours). Changing the web-forms took another 6
person-hours. All in all this is an additional effort of 36
person hours.

Since we did not actually perform the prototyping, it is
hard to say how much time it would have taken. We have
to estimate the effort. Most probably three persons (the
customer, one analyst and one developer would have par-
ticipated in a rather short session. We think it would not
have taken more time than the analysing discussion that we
had afterwards. That is 1 hour. Therefore, the prototyping
would have taken three person-hours only. Overall, it would
have saved 33 person-hours. The usual payment per hour in
that time was about 80 EUR an hour (not including VAT).
That makes a sum of 2640 EUR (about 24.000 SEK). On the
first view, 2.640 EUR does not seem to be a large amount of
money. When comparing this to the overall project budget
of about 35.000 EUR it is quite a number (about 7,5%).

The problem presented here is of very low complexity.
Therefore, a very easy and so to say lightweight prototyp-
ing can be applied. That means that no one really would
have had to learn anything from scratch. A pen and paper
prototype for interface design is very much straight fore-
word. As shown, the benefit would have been large enough
to justify the effort that the prototyping would have caused.

9



8.2. Example 2: Lacking Usability

Topic of this project presented next was to develop soft-
ware as assistance for a harbour master to administrate a
harbour during tall ships events. It was run as a students
project as part of a course in software engineering. The
project, as well as its product, was called “Professional Port
Organizer” (PPO). Since the project was very non-specific
(no market, no customer) all activities and decisions were
very much related to our own ideas of how such a prod-
uct could look like. When conducting the first acceptance
tests with untrained users we received several comments,
which indicated that we had problems with the usability of
our program. “Daffy game” was the least serious comment
we received. During the design, we very much focused on
issues we regarded as the most problematic things, e.g. ob-
ject model and data persistence, 2D representation of the
harbour and the ships. Therefore, we extensively used ex-
plorative prototypes to check which approach would lead to
a good result. Unfortunately, we missed to find good so-
lutions for positioning the ships and changing the shape of
the harbour. Additionally the searching for ships also was
not straight forward, as the users mentioned. Of course, we
thought all these aspects were solved in a good way. Ac-
tually, we thought we found even excellent solutions. The
reason for this was our ongoing involvement in the project
and the program we developed or very own understanding
of the program and made lots of the functionality invisible,
e. g. using Ctrl-key and Shift-key together with the left or
right mouse button and such things. Since we were the ones
implementing theses solutions, we did not have any prob-
lems in using the software. However, to be honest we un-
derstand that users during our acceptance test really disliked
our solutions, since the solutions are not very intuitive and
far away, what one could call a windows-standard. On the
other hand, this program itself also was far away of common
office tools or anything else, which is often used. Especially
a graphical 2D interface is not very common in usual soft-
ware products. Therefore the program only was usable after
an intensive training.

A prototype for this problem would have had to focus on
the graphical 2D representation of the harbour and the ships.
The type of the prototype, which could have improved the
result, is an interface prototype. In this special case it would
have been used in an exploratory way, e. g. the prototype
would have been used to figure out which kind of solution
for the 2D representation would have led to a good accep-
tance. In this context, the prototyping can be regarded as an
early part of the acceptances test, at least for the interface.
This is of special importance, since there were no compa-
rable products available. Just as the other prototypes for
technical solutions this prototype would have shown, which
way of implementation would work out best. The imple-

mentation of the 2D interface was the result of a large pro-
gramming effort compared to the complete project. Because
of this, most probably building the prototype with the same
tools and technologies would have caused far too high costs.
Therefore, an interface builder (compare to [1]) would have
been a good tool for the prototype-development in this case.
Perhaps even a static picture of the situation (harbour with
ships) would have been sufficient.

During a prototyping session we would have had to find
out what the potential users would expect to happen, for ex-
ample when they use the mouse and perform a left click on
a ship, or how they want to move a ship from one position
to another. Therefore, a number of questions and scenarios
(according to the developed use cases) would have had to be
developed. Since the use cases were developed anyway, we
estimate the effort for the preparation of the prototyping ses-
sion with about four person-hours. The prototyping session
itself would have been conducted in two or three groups of
four users with one developer and for about 1,5 hours (in
total 15 person-hours). Processing the results, we estimate
with another 8 person-hours. In total, this makes 27 person
hours. This would have been the additional investment.

The costs of the lacking usability is a bit hard to esti-
mate, because we never sold or used the program for any
purpose. When we assume, that we wanted to launch this
program we would have had to work over the 2D interface.
The complete development effort spent in the 2D interface
is about 95 person-hours. As a rough estimation, we think
half of it had to be re-done. The benefit therefore would
have been in saving about 24 person-hours. Compared to
the complete project (680 person-hours) this is about 3,5%
of the overall project.

8.3. Example 3: Hardware Incapability

Hardware incapability was one of the problems that oc-
curred during the development of an Instant Messaging
client for the SymbianOS platform. The application had
to be run on both the Sony Eriksson P800 telephone and
the emulation software that was used to simulate the Sym-
bianOS on a standard PC. The development of the applica-
tion went well in most regard but there were one setback
that was most memorable.

During the development a problem started to occur, we
were not able to make the application work over a Bluetooth
connection. This was one of the two types of connections
we were using for the application, with the second type be-
ing GPRS. The reason for having Bluetooth integrated was
that it allowed the application to access Bluetooth hubs con-
nected to the Internet. The idea was that to route the traffic
through the Bluetooth hubs and access firm Internet connec-
tions. This would allow for the Instant Messaging service to
be used “without” cost when in close proximity to a Blue-

10



tooth hub (e.g. a hub in the office where you are working).
During the design phase we included both of the differ-

ent types of connections, something that also was stated as
a requirement for the product. At an early stage we recog-
nised that the network access was one of the harder parts of
the implementation and assigned one person the develop-
ment of this part as a full time occupation. This was done
at the beginning of the first development phase even though
this functionality was not required until the third delivery.

The problem that we ran into was that we had to be able
to access certain low level functions of the hardware that
we were working against. These functions were necessary
if we were to be able to access the Bluetooth connection
in the telephones. Since the operating system works over
a large number of devices, the information of how to ac-
cess these functions were present and the emulation soft-
ware could handle the different access calls that was made
to the operating system.

Since the development was done towards an embedded
system we were not able to retrieve as much debugging data
as we really needed. Since the emulation of the hardware
worked fine it was a matter of tracking down the reason for
not being able to establish a Bluetooth connection on the
embedded system. Other problems occurred; the system
was nice enough to fall back to a GPRS connection when
Bluetooth did not work. This made it even harder since we
always had to double check to make sure that the right type
of connection had been established.

To test the network code we did not develop a prototype
but instead we used the latest stable version of the appli-
cation. What we needed for testing the network code were
an application that allowed for sending and receiving infor-
mation over a network connection as well as switching be-
tween the two different types of connections. Since this was
exactly what our application did we thought that it would
suffice to utilize it.

This is prototyping comes in; in retrospect it would have
been better to develop a standalone application for the test-
ing and evaluation of the network code. The use of the or-
dinary application as a base for the evaluation of a solution
is not always the best idea, especially when the ordinary
application is still under development.

The better approach would have been to develop a basic
standalone application that mimicked the actual application
without all the “fancy” stuff present (GUI, database etc.).
This application would have been thrown away when a vi-
able solution had been found and the network code that we
needed could then be integrated into the real application.

This would have allowed the network programmer to
evaluate his code without the influence and interference of
the other people working on the application. This would
also have allowed for an easier way to track down problems.
The use of a more “controlled” environment would have al-

lowed for fewer errors to distract the network programmer
that instead had to compensate for problems that occurred
in other parts of the application during the development.

Another problem that arose with the use of the “ordi-
nary” application as a testing ground was that it limited the
number of changes that were possible to apply to the soft-
ware. What was most hindering was that since the embed-
ded system did make it harder to retrieve debug information,
we were in a need of better information “printouts” regard-
ing what was happening in the background. This could only
be achieved to a smaller extent without the risk of causing
problem within unrelated parts of the program.

Since this project was a school project there was no ac-
tual cost in money. The cost came in the form of lost hours
that were spent on trying to develop a solution to which no
actual solution existed. Since the application only had to
work on the present hardware it did not “break” the require-
ments when it was not fulfilled. What we lost in time was
about 200 hours work for one person. This was the time that
was spent on trying to figure out why the different solutions
did not work as they should.

8.4. Example 4: Network Protocol Evaluation

This example is taken from the same project as the previ-
ously mentioned. During the development we had an issue
that, even though not being a defect as such, still could have
benefited from being developed using a prototype. The In-
stant Messaging application was supposed to be able to han-
dle any number of different Instant Messaging protocols.
The customer stated as a requirement that we should at least
have support for two different protocols of our choice.

These protocols were handled by a plug-in system that
allowed for the use of multiple protocols at the same time.
For each of the protocols a parser to handle the syntax had to
be implemented. The plug-in system worked against those
parsers when they were processing the incoming and out-
going information. The problem we had was that we could
not begin the development of the parsers before the plug-in
system was finished.

The main problem was that we had to establish the in-
terface between the parsers and the plug-in system. The
interface was defined during the design phase and thereby
we had a base to stand on when developing the prototype.
This would have allowed us to work on the parsers in paral-
lel to the development of the application and allowing us to
incorporate them into the system when the plug-in system
was working.

What we wanted to achieve here was to evaluate different
protocols and how to best implement the parsers for each of
them. To be able to do this at an earlier stage we would
have had to built a small piece of software that emulated the
networking functions of the application. This would have

11



allowed us to create different parsers that could be evalu-
ated without having the finished product. Simply put, this
solution would have allowed us to create parsers at an ear-
lier stage.

It is hard to tell the actual gain of using prototypes for
the purpose described. We did manage to implement and
deliver two protocols as the requirements stated. It is pos-
sible thought that earlier start of their development would
have allowed for an additional protocol parser to have been
delivered with the final product.

In the project the parsers began development after the
second half of the project time. During this time there were
still problems with the application, problems that some-
times led to shorter standstills of the development. This
was also coupled with the fact that a number of the different
parts of the program had to be verified using the hardware
e. g. it had to be tested on the P800 telephones. At the most
we only had access to two telephones during the develop-
ment and this in particular affected the implementation of
the parsers since they had to be run on the hardware.

This caused small delays throughout the development of
the parsers and therefore hindered the progress. Since as ex-
plained earlier this was a student project there was no actual
loss of money due to these delays. The cost instead comes
in the form of man hours. Without actual facts only a small
reasoning can be done about this.

An assumption could be made that the delays cost us one
man-hour for each day. The development of the two proto-
col parsers took for one person a total of four weeks, two
weeks for each of the protocols. This means that not using
the suggested alternate solution cost us a total of 20 hours
during the development.

Unfortunately the building of the software used for eval-
uation of the different parsers would also have cost us time.
If it would have taken more than 20 man-hours is hard to
tell without actually doing so. Aside from the cost in devel-
opment time another benefit might have arisen that would
have approved the cost of the additional work for the proto-
typing. Each time that the prototype developers had to use
the hardware there was also a risk of creating a delay for
another set of developers in the project.

9. Conclusions

This article has shown that there are many different
prototyping techniques available. Those techniques range
from low-fidelity prototypes like paper mock-ups of user
interfaces to complete software development processes like
rapid prototyping. Since there are so many different tech-
niques available, prototyping can be used in any kind of
project. However, not every prototyping technique might
be applicable in any project.

As shown in this article, prototyping can prevent dif-
ferent defects and improve the quality of the produced
software system. Of course prototyping can not prevent
any kind of defect. Quality systems like CMMI and
ISO 9000:2000 suggest the usage of prototyping where it
is appropriate. Also, it is possible to combine prototyping
and software metrics as shown in this article.

Even thus the benefits of prototyping seem to be obvi-
ous, people and organisations must be convinced to use this
technique. We showed several approaches to communicate
the benefits and advantages within an organisation to moti-
vate the people to use prototyping.

Furthermore we presented different examples of projects
we participated in. We showed how those projects would
have been improved by applying prototyping techniques
and we also presented a basic cost-benefit analysis for each
example.

In summary it can be said prototyping is a valuable tech-
nique, which should be used in every project if possible.
However, software development organisations have to keep
in mind that relying on just a single defect prevention tech-
nique is not good either.

References

[1] D. Baumer, W. Bischofberger, H. Lichter, and H. Zul-
lighoven. User interface prototyping-concepts, tools, and
experiences. InProceedings of the 18th International Con-
ference on Software Engineering, pages 532–541. IEEE
Computer Society Press, 1996.

[2] B. Bergman and B. Klefsjö. Quality: from Customer Needs
to Customer Satisfaction. Studentlitteratur, Lund, 2003.

[3] B. W. Boehm. A spiral model of software development and
enhancement.Computer, 21(5):61–72, 1988.

[4] J. Bosch.Design & Use of Software Architectures: Adopt-
ing and evolving a product-line approach. Addison-Wesley,
London, 2000.

[5] F. P. Brooks. The Mythical Man-Month. Addison Wesley
Longman Inc., New York, 15th edition, 2001.

[6] T. Connelly. Database Systems. Addison-Wesley Limited,
1999.

[7] L. L. Constantine. On criteria for module interfaces.IEEE
Trans SE, 16(12):1440, December 1990.

[8] T. DeMarco and T. Lister.Peopleware: productive projects
and teams. Dorset House Publishing Co., New York, 2nd
edition, 1999.

[9] C. Floyd. A systematic look at prototyping, pages 1–18.
Springer-Verlag, Berlin, 1984.

[10] S. Henry and D. Kafura. Software structure metrics based
on information flow. IEEE Trans. Software Engineering,
7:510–518, 1981.

[11] J. Highsmith. Agile software development ecosystems.
Addison-Wesley, Boston, 2002.

[12] W. S. Humphrey. Managing technical people: innova-
tion, teamwork, and the software process. Addison-Wesley,
Boston, 6th edition, 1997.

12



[13] A. K. Jain and P. D. Ting. Software quality via rapid pro-
totyping. InGlobal Telecommunications Conference, pages
642–646. IEEE, 1989.

[14] A. L. Jay. Quick & dirty. Computerworld, 26(50):109–112,
1992.

[15] J. Johnson, K. D. Boucher, K. Connors, and J. Robin-
son. Collaborating on project success.Software Magazine,
February/March, 2001.

[16] G. Kotonya and I. Sommerville.Requirements Engineering:
Processes and Techniques. Wiley, Chichester, 2004.

[17] H. Lichter, M. Schneider-Hufschmidt, and H. Züllighoven.
Prototyping in industrial software projects – bridging the
gap between theory and practice. InProceedings of the 15th
international conference on Software Engineering, pages
221–229, Los Alamitos, CA, USA, 1993. IEEE Computer
Society Press.

[18] British Standards Institute. The TickIT Guide: Using ISO
9001:2000 for software quality management system, Jan-
uary 2001 (5.0). http://www.tickit.org/.

[19] CMMI Product Team. Capability maturity model integra-
tion version 1.1 staged representation, 2002. CMU/SEI-
2002-TR-029.

[20] S. L. Pfleeger. Software engineering theory and practice.
Prentice Hall Inc., 2nd edition, 2001.

[21] J. Preece, H. Sharp, and Y. Rogers.Interaction Design be-
yond human computer interaction. John Wiley & Sons Inc.,
2002.

[22] M. Rettig. Prototyping for tiny fingers.Communications of
the ACM, 37(4):21–27, April 1994.

[23] I. Sommerville.Software Engineering. Pearson, Boston, 7th
edition, 2004.

[24] M. Thompson and N. Wishbow. Prototyping: tools and
techniques: improving software and documentation qual-
ity through rapid prototyping. InProceedings of the 10th
annual international conference on Systems documentation,
pages 191–199, New York, NY, USA, 1992. ACM Press.

[25] D. R. Wallace and R. U. Fujii. Software verification and
validation: an overview.Software, 6(3):10–17, May 1989.

13


